Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Clin Exp Allergy ; 52(4): 550-560, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212067

RESUMO

RATIONALE: Rhinoviruses are the major precipitant of asthma exacerbations and individuals with asthma experience more severe/prolonged rhinovirus infections. Concurrent viral infection and allergen exposure synergistically increase exacerbation risk. Although dendritic cells orchestrate immune responses to both virus and allergen, little is known about their role in viral asthma exacerbations. OBJECTIVES: To characterize dendritic cell populations present in the lower airways, and to assess whether their numbers are altered in asthma compared to healthy subjects prior to infection and during rhinovirus-16 infection. METHODS: Moderately-severe atopic asthmatic patients and healthy controls were experimentally infected with rhinovirus-16. Bronchoalveolar lavage was collected at baseline, day 3 and day 8 post infection and dendritic cells isolated using fluorescence activated cell sorting. MEASUREMENTS AND MAIN RESULTS: Numbers of type I conventional dendritic cells, which cross prime CD8+ T helper cells and produce innate interferons, were significantly reduced in the lower airways of asthma patients compared to healthy controls at baseline. This reduction was associated serum IgE at baseline and with reduced numbers of CD8+ T helper cells and with increased viral replication, airway eosinophils and reduced lung function during infection. IgE receptor expression on lower airway plasmacytoid dendritic cells was significantly increased in asthma, consistent with a reduced capacity to produce innate interferons. CONCLUSIONS: Reduced numbers of anti-viral type I conventional dendritic cells in asthma are associated with adverse outcomes during rhinovirus infection. This, with increased FcεR1α expression on lower airway plasmacytoid DCs could mediate the more permissive respiratory viral infection observed in asthma patients.


Assuntos
Asma , Infecções por Picornaviridae , Células Dendríticas , Humanos , Rhinovirus , Índice de Gravidade de Doença
2.
Am J Respir Crit Care Med ; 204(11): 1259-1273, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469272

RESUMO

Rationale: Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well characterized. Objectives: To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods: Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16 and underwent bronchoscopy at baseline and at Day 3, and Day 8 after inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage using flow cytometry. The ratio of bronchoalveolar lavage ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results: At baseline, ILC2s were significantly higher in patients with asthma than in healthy subjects. At Day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in patients with asthma than in healthy subjects (all comparisons P < 0.05). In healthy subjects, ILC1s increased from baseline at Day 3 (P = 0.001), while in patients with asthma, ILC1s increased from baseline at Day 8 (P = 0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P = 0.024) and Day 8 (P = 0.005). Increased ILC2:ILC1 ratio in patients with asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions: An ILC2-predominant inflammatory profile in patients with asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations.


Assuntos
Asma/etiologia , Asma/imunologia , Asma/virologia , Progressão da Doença , Imunidade Inata , Infecções por Picornaviridae/complicações , Fatores de Virulência/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Am J Respir Crit Care Med ; 204(9): 1075-1085, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319857

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a condition punctuated by acute exacerbations commonly triggered by viral and/or bacterial infection. Early identification of exacerbation triggers is important to guide appropriate therapy, but currently available tests are slow and imprecise. Volatile organic compounds (VOCs) can be detected in exhaled breath and have the potential to be rapid tissue-specific biomarkers of infection etiology. Objectives: To determine whether volatile organic compound measurement could distinguish viral from bacterial infection in COPD. Methods: We used serial sampling within in vitro and in vivo studies to elucidate the dynamic changes that occur in VOC production during acute respiratory viral infection. Highly sensitive gas chromatography-mass spectrometry techniques were used to measure VOC production from infected airway epithelial-cell cultures and in exhaled breath samples from healthy subjects experimentally challenged with rhinovirus (RV)-A16 and from subjects with COPD with naturally occurring exacerbations. Measurements and Main Results: We identified a novel VOC signature comprising decane and other long-chain alkane compounds that is induced during RV infection of cultured airway epithelial cells and is also increased in the exhaled breath from healthy subjects experimentally challenged with RV and from patients with COPD during naturally occurring viral exacerbations. These compounds correlated with the magnitude of antiviral immune responses, viral burden, and exacerbation severity but were not induced by bacterial infection, suggesting that they represent a specific virus-inducible signature. Conclusions: Our study highlights the potential for measurement of exhaled breath VOCs as rapid, noninvasive biomarkers of viral infection. Further studies are needed to determine whether measurement of these signatures could be used to guide more targeted therapy with antibiotic/antiviral agents for COPD exacerbations.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Diagnóstico Precoce , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Compostos Orgânicos Voláteis/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830082

RESUMO

Virus-induced respiratory tract infections are a major health burden in childhood, and available treatments are supportive rather than disease modifying. Rhinoviruses (RVs), the cause of approximately 80% of common colds, are detected in nearly half of all infants with bronchiolitis and the majority of children with an asthma exacerbation. Bronchiolitis in early life is a strong risk factor for the development of asthma. Here, we found that RV infection induced the expression of miRNA 122 (miR-122) in mouse lungs and in human airway epithelial cells. In vivo inhibition specifically in the lung reduced neutrophilic inflammation and CXCL2 expression, boosted innate IFN responses, and ameliorated airway hyperreactivity in the absence and in the presence of allergic lung inflammation. Inhibition of miR-122 in the lung increased the levels of suppressor of cytokine signaling 1 (SOCS1), which is an in vitro-validated target of miR-122. Importantly, gene silencing of SOCS1 in vivo completely reversed the protective effects of miR-122 inhibition on RV-induced lung disease. Higher miR-122 expression in nasopharyngeal aspirates was associated with a longer time on oxygen therapy and a higher rate of treatment failure in 87 infants hospitalized with moderately severe bronchiolitis. These results suggest that miR-122 promotes RV-induced lung disease via suppression of its target SOCS1 in vivo. Higher miR-122 expression was associated with worse clinical outcomes, highlighting the potential use of anti-miR-122 oligonucleotides, successfully trialed for treatment of hepatitis C, as potential therapeutics for RV-induced bronchiolitis and asthma exacerbations.


Assuntos
Bronquite/terapia , Pneumopatias/virologia , MicroRNAs/genética , Infecções por Picornaviridae/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Antagomirs/farmacologia , Bronquite/virologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Feminino , Humanos , Lactente , Pneumopatias/genética , Pneumopatias/terapia , Masculino , Camundongos Endogâmicos BALB C , Nasofaringe/virologia , Infecções por Picornaviridae/tratamento farmacológico , Rhinovirus/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Falha de Tratamento , Replicação Viral
5.
Am J Respir Cell Mol Biol ; 64(3): 344-356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264064

RESUMO

The interplay of type-2 inflammation and antiviral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma; however, mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild to moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then used to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface-differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression, increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6, which was required for CCL17 but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-κB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, these findings suggest that therapeutic targeting of type-2 STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.


Assuntos
Asma/patologia , Asma/virologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Progressão da Doença , Rhinovirus/fisiologia , Fator de Transcrição STAT6/metabolismo , Células A549 , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Cinética , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Doadores de Tecidos , Adulto Jovem
7.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997212

RESUMO

We are pursuing cancer immunotherapy with a neuro-attenuated recombinant poliovirus, PVSRIPO. PVSRIPO is the live attenuated type 1 (Sabin) poliovirus vaccine carrying a heterologous internal ribosomal entry site (IRES) of human rhinovirus type 2 (HRV2). Intratumoral infusion of PVSRIPO is showing promise in the therapy of recurrent WHO grade IV malignant glioma (glioblastoma), a notoriously treatment-refractory cancer with dismal prognosis. PVSRIPO exhibits profound cytotoxicity in infected neoplastic cells expressing the poliovirus receptor CD155. In addition, it elicits intriguing persistent translation and replication, giving rise to sustained type I interferon (IFN)-dominant proinflammatory stimulation of antigen-presenting cells. A key determinant of the inflammatory footprint generated by neoplastic cell infection and its role in shaping the adaptive response after PVSRIPO tumor infection is the virus's inherent relationship to the host's innate antiviral response. In this report, we define subversion of innate host immunity by PVSRIPO, enabling productive viral translation and cytopathogenicity with extremely low multiplicities of infection in the presence of an active innate antiviral IFN response.IMPORTANCE Engaging innate antiviral responses is considered key for instigating tumor-antigen-specific antitumor immunity with cancer immunotherapy approaches. However, they are a double-edged sword for attempts to enlist viruses in such approaches. In addition to their role in the transition from innate to adaptive immunity, innate antiviral IFN responses may intercept the viral life cycle in cancerous cells, prevent viral cytopathogenicity, and restrict viral spread. This has been shown to reduce overall antitumor efficacy of several proposed oncolytic virus prototypes, presumably by limiting direct cell killing and the ensuing inflammatory profile within the infected tumor. In this report, we outline how an unusual recalcitrance of polioviruses toward innate antiviral responses permits viral cytotoxicity and propagation in neoplastic cells, combined with engaging active innate antiviral IFN responses.


Assuntos
Glioblastoma/imunologia , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/imunologia , Vírus Oncolíticos/imunologia , Poliovirus/imunologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioblastoma/terapia , Glioblastoma/virologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Vírus Oncolíticos/genética , Poliovirus/genética , Receptores Virais/genética , Receptores Virais/imunologia
8.
Nat Commun ; 9(1): 2229, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884817

RESUMO

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-ß reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/ß receptor (IFNAR1-/-) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-ß therapy may protect.


Assuntos
Corticosteroides/farmacologia , Carga Bacteriana/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Muco/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Rhinovirus/efeitos dos fármacos , Administração por Inalação , Corticosteroides/administração & dosagem , Corticosteroides/imunologia , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Linhagem Celular , Fluticasona/administração & dosagem , Fluticasona/imunologia , Fluticasona/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/virologia , Camundongos Knockout , Muco/microbiologia , Muco/virologia , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Rhinovirus/imunologia , Rhinovirus/fisiologia
9.
Am J Respir Crit Care Med ; 197(10): 1265-1274, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29466680

RESUMO

RATIONALE: Immunophenotypes of antiviral responses, and their relationship with asthma, allergy, and lower respiratory tract infections, are poorly understood. OBJECTIVES: We characterized multiple cytokine responses of peripheral blood mononuclear cells to rhinovirus stimulation, and their relationship with clinical outcomes. METHODS: In a population-based birth cohort, we measured 28 cytokines after stimulation with rhinovirus-16 in 307 children aged 11 years. We used machine learning to identify patterns of cytokine responses, and related these patterns to clinical outcomes, using longitudinal models. We also ascertained phytohemagglutinin-induced T-helper cell type 2 (Th2)-cytokine responses (PHA-Th2). MEASUREMENTS AND MAIN RESULTS: We identified six clusters of children based on their rhinovirus-16 responses, which were differentiated by the expression of four cytokine/chemokine groups: interferon-related (IFN), proinflammatory (Inflam), Th2-chemokine (Th2-chem), and regulatory (Reg). Clusters differed in their clinical characteristics. Children with an IFNmodInflamhighestTh2-chemhighestReghighest rhinovirus-16-induced pattern had a PHA-Th2low response, and a very low asthma risk (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01-0.81; P = 0.03). Two clusters had a high risk of asthma and allergic sensitization, but with different trajectories from infancy to adolescence. The IFNlowestInflamhighTh2-chemlowRegmod cluster exhibited a PHA-Th2lowest response and was associated with early-onset asthma and sensitization, and the highest risk of asthma exacerbations (OR, 1.37; 95% CI, 1.07-1.76; P = 0.014) and lower respiratory tract infection hospitalizations (OR, 2.40; 95% CI, 1.26-4.58; P = 0.008) throughout childhood. In contrast, the IFNhighestInflammodTh2-chemmodReghigh cluster with a rhinovirus-16-cytokine pattern was characterized by a PHA-Th2highest response, and a low prevalence of asthma/sensitization in infancy that increased sharply to become the highest among all clusters by adolescence (but with a low risk of asthma exacerbations). CONCLUSIONS: Early-onset troublesome asthma with early-life sensitization, later-onset milder allergic asthma, and disease protection are each associated with different patterns of rhinovirus-induced immune responses.


Assuntos
Antivirais/uso terapêutico , Asma/tratamento farmacológico , Citocinas/imunologia , Infecções por Picornaviridae/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Rhinovirus/efeitos dos fármacos , Rhinovirus/imunologia , Adolescente , Antivirais/imunologia , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Masculino , Infecções por Picornaviridae/imunologia , Infecções Respiratórias/imunologia
10.
J Allergy Clin Immunol ; 142(2): 542-556.e12, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29054692

RESUMO

BACKGROUND: Although acute exacerbations, mostly triggered by viruses, account for the majority of hospitalizations in asthmatic patients, there is still very little known about the pathophysiologic mechanisms involved. Plasmacytoid dendritic cells (pDCs), prominent cells of antiviral immunity, exhibit proinflammatory or tolerogenic functions depending on the context, yet their involvement in asthma exacerbations remains unexplored. OBJECTIVES: We sought to investigate the role of pDCs in allergic airway inflammation and acute asthma exacerbations. METHODS: Animal models of allergic airway disease (AAD) and virus-induced AAD exacerbations were used to dissect pDC function in vivo and unwind the potential mechanisms involved. Sputum from asthmatic patients with stable disease or acute exacerbations was further studied to determine the presence of pDCs and correlation with inflammation. RESULTS: pDCs were key mediators of the immunoinflammatory cascade that drives asthma exacerbations. In animal models of AAD and rhinovirus-induced AAD exacerbations, pDCs were recruited to the lung during inflammation and migrated to the draining lymph nodes to boost TH2-mediated effector responses. Accordingly, pDC depletion after allergen challenge or during rhinovirus infection abrogated exacerbation of inflammation and disease. Central to this process was IL-25, which was induced by allergen challenge or rhinovirus infection and conditioned pDCs for proinflammatory function. Consistently, in asthmatic patients pDC numbers were markedly increased during exacerbations and correlated with the severity of inflammation and the risk for asthma attacks. CONCLUSIONS: Our studies uncover a previously unsuspected role of pDCs in asthma exacerbations with potential diagnostic and prognostic implications. They also propose the therapeutic targeting of pDCs and IL-25 for the treatment of acute asthma.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Interleucinas/metabolismo , Infecções por Picornaviridae/imunologia , Hipersensibilidade Respiratória/imunologia , Rhinovirus/fisiologia , Células Th2/imunologia , Doença Aguda , Animais , Asma/complicações , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Picornaviridae/complicações , Hipersensibilidade Respiratória/complicações
11.
J Allergy Clin Immunol ; 140(4): 909-920, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28987220

RESUMO

Viral respiratory tract infections are associated with asthma inception in early life and asthma exacerbations in older children and adults. Although how viruses influence asthma inception is poorly understood, much research has focused on the host response to respiratory viruses and how viruses can promote; or how the host response is affected by subsequent allergen sensitization and exposure. This review focuses on the innate interferon-mediated host response to respiratory viruses and discusses and summarizes the available evidence that this response is impaired or suboptimal. In addition, the ability of respiratory viruses to act in a synergistic or additive manner with TH2 pathways will be discussed. In this review we argue that these 2 outcomes are likely linked and discuss the available evidence that shows reciprocal negative regulation between innate interferons and TH2 mediators. With the renewed interest in anti-TH2 biologics, we propose a rationale for why they are particularly successful in controlling asthma exacerbations and suggest ways in which future clinical studies could be used to find direct evidence for this hypothesis.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Infecções Respiratórias/imunologia , Células Th2/imunologia , Viroses/imunologia , Alergia e Imunologia/tendências , Animais , Progressão da Doença , Humanos , Interferons/metabolismo
12.
Curr Treat Options Allergy ; 4(1): 43-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413769

RESUMO

Allergen immunotherapy (AIT) is an immune modulating treatment for allergic diseases. Although highly effective, some patients do not respond to the treatment. To date there are no surrogate biomarkers that are predictive of the clinical response to AIT. More and more is known about the underlying immunological mechanism involved in AIT. Through modulation of both innate and adaptive immune responses, involving reduced ILC2 and enhanced Treg and Breg induction and functionality, along with induction of IgG4 antibody production which have the capacity to inhibit both allergen-induced basophil responsiveness and CD23-mediated IgE-facilitated allergen presentation, the result is an immune skewing towards a more balanced Type I response. So far, however there is not a clear correlation with the observed immunological changes and predictive correlates of clinical efficacy. The most promising biomarker of successful AIT is IgE-FAB as a reflection of functional IgG4. Cellular responses and cytokine analysis gives a great deal of insight into the mechanisms of AIT but may not represent useful or indeed reliable biomarkers in a clinical setting. There is a need for more research for confirmation and interpretation of the possible association with biomarkers and clinical response to AIT.

13.
EBioMedicine ; 19: 128-138, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28373098

RESUMO

BACKGROUND: Rhinovirus infection is a major cause of asthma exacerbations. OBJECTIVES: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. METHODS: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. RESULTS: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). CONCLUSIONS: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation.


Assuntos
Asma/imunologia , Brônquios/imunologia , Citocinas/imunologia , Mucosa Nasal/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus , Adulto , Asma/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/virologia , Carga Viral , Adulto Jovem
14.
Antiviral Res ; 142: 185-192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356234

RESUMO

Rhinoviruses (RVs) cause the common cold and are associated with exacerbations of chronic inflammatory respiratory diseases, especially asthma and chronic obstructive pulmonary disease (COPD). We have assessed the antiviral drugs Anaferon for Children (AC) and Ergoferon (containing AC as one of the active pharmaceutical ingredients) in in vitro and in vivo experimental models, in order to evaluate their anti-rhinoviral and immunomodulatory potential. HeLa cells were pretreated with AC, and levels of the interferon-stimulated gene (ISG), 2'-5'-oligoadenylate synthetase 1 (OAS1-A) and viral replication were analyzed. In a mouse model of RV-induced exacerbation of allergic airway inflammation we administered Ergoferon and analyzed its effect on type I (IFN-ß), type II (IFN-γ) and type III (IFN-λ) IFNs induction, cell counts in bronchoalveolar lavage (BAL), cytokine (interleukin (IL)-4; IL-6) and chemokine (CXCL10/IP-10; CXCL1/KC) levels. It was shown that AC increased OAS1-А production and significantly decreased viral replication in vitro. Increased IFNs expression together with reduced neutrophils/lymphocytes recruitment and correlated IL-4/IL-6 declination was demonstrated for Ergoferon in vivo. However, there was no effect on examined chemokines. We conclude that AC and Ergoferon possess effects against RV infection and may have potential as novel therapies against RV-induced exacerbations of asthma.


Assuntos
Anticorpos/farmacologia , Antivirais/imunologia , Antivirais/farmacologia , Infecções por Picornaviridae/tratamento farmacológico , Rhinovirus/efeitos dos fármacos , 2',5'-Oligoadenilato Sintetase/análise , Animais , Asma/imunologia , Asma/virologia , Linhagem Celular , Quimiocinas/metabolismo , Criança , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Inflamação , Interferons/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Rhinovirus/patogenicidade
15.
Am J Respir Crit Care Med ; 195(12): 1586-1596, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085492

RESUMO

RATIONALE: Newly characterized type 2 innate lymphoid cells (ILC2s) display potent type 2 effector functionality; however, their contribution to allergic airways inflammation and asthma is poorly understood. Mucosal biopsy used to characterize the airway mucosa is invasive, poorly tolerated, and does not allow for sequential sampling. OBJECTIVES: To assess the role of ILC2s during nasal allergen challenge in subjects with allergic rhinitis using novel noninvasive methodology. METHODS: We used a human experimental allergen challenge model, with flow cytometric analysis of nasal curettage samples, to assess the recruitment of ILC2s and granulocytes to the upper airways of subjects with atopy and healthy subjects after allergen provocation. Soluble mediators in the nasal lining fluid were measured using nasosorption. MEASUREMENTS AND MAIN RESULTS: After an allergen challenge, subjects with atopy displayed rapid induction of upper airway symptoms, an enrichment of ILC2s, eosinophils, and neutrophils, along with increased production of IL-5, prostaglandin D2, and eosinophil and T-helper type 2 cell chemokines compared with healthy subjects. The most pronounced ILC2 recruitment was observed in subjects with elevated serum IgE and airway eosinophilia. CONCLUSIONS: The rapid recruitment of ILC2s to the upper airways of allergic patients with rhinitis, and their association with key type 2 mediators, highlights their likely important role in the early allergic response to aeroallergens in the airways. The novel methodology described herein enables the analysis of rare cell populations from noninvasive serial tissue sampling.


Assuntos
Alérgenos/imunologia , Linfócitos/imunologia , Mucosa Nasal/imunologia , Rinite Alérgica/imunologia , Adolescente , Adulto , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata/imunologia , Masculino , Pessoa de Meia-Idade , Células Th2/imunologia , Adulto Jovem
16.
PLoS Pathog ; 12(9): e1005913, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27683080

RESUMO

Current understanding of adaptive immune, particularly T cell, responses to human rhinoviruses (RV) is limited. Memory T cells are thought to be of a primarily T helper 1 type, but both T helper 1 and T helper 2 memory cells have been described, and heightened T helper 2/ lessened T helper 1 responses have been associated with increased RV-induced asthma exacerbation severity. We examined the contribution of T helper 1 cells to RV-induced airways inflammation using mice deficient in the transcription factor T-Box Expressed In T Cells (Tbet), a critical controller of T helper 1 cell differentiation. Using flow cytometry we showed that Tbet deficient mice lacked the T helper 1 response of wild type mice and instead developed mixed T helper 2/T helper 17 responses to RV infection, evidenced by increased numbers of GATA binding protein 3 (GATA-3) and RAR-related orphan receptor gamma t (RORγt), and interleukin-13 and interleukin-17A expressing CD4+ T cells in the lung. Forkhead box P3 (FOXP3) and interleukin-10 expressing T cell numbers were unaffected. Tbet deficient mice also displayed deficiencies in lung Natural Killer, Natural Killer T cell and γδT cell responses, and serum neutralising antibody responses. Tbet deficient mice exhibited pronounced airways eosinophilia and mucus production in response to RV infection that, by utilising a CD4+ cell depleting antibody, were found to be T helper cell dependent. RV induction of T helper 2 and T helper 17 responses may therefore have an important role in directly driving features of allergic airways disease such as eosinophilia and mucus hypersecretion during asthma exacerbations.

17.
J Antimicrob Chemother ; 71(10): 2767-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27494903

RESUMO

BACKGROUND: Exacerbations of asthma and COPD are triggered by rhinoviruses. Uncontrolled inflammatory pathways, pathogenic bacterial burden and impaired antiviral immunity are thought to be important factors in disease severity and duration. Macrolides including azithromycin are often used to treat the above diseases, but exhibit variable levels of efficacy. Inhaled corticosteroids are also readily used in treatment, but may lack specificity. Ideally, new treatment alternatives should suppress unwanted inflammation, but spare beneficial antiviral immunity. METHODS: In the present study, we screened 225 novel macrolides and tested them for enhanced antiviral activity against rhinovirus, as well as anti-inflammatory activity and activity against Gram-positive and Gram-negative bacteria. Primary bronchial epithelial cells were grown from 10 asthmatic individuals and the effects of macrolides on rhinovirus replication were also examined. Another 30 structurally similar macrolides were also examined. RESULTS: The oleandomycin derivative Mac5, compared with azithromycin, showed superior induction (up to 5-fold, EC50 = 5-11 µM) of rhinovirus-induced type I IFNß, type III IFNλ1 and type III IFNλ2/3 mRNA and the IFN-stimulated genes viperin and MxA, yet had no effect on IL-6 and IL-8 mRNA. Mac5 also suppressed rhinovirus replication at 48 h, proving antiviral activity. Mac5 showed antibacterial activity against Gram-positive Streptococcus pneumoniae; however, it did not have any antibacterial properties compared with azithromycin when used against Gram-negative Escherichia coli (as a model organism) and also the respiratory pathogens Pseudomonas aeruginosa and non-typeable Haemophilus influenzae. Further non-toxic Mac5 derivatives were identified with various anti-inflammatory, antiviral and antibacterial activities. CONCLUSIONS: The data support the idea that macrolides have antiviral properties through a mechanism that is yet to be ascertained. We also provide evidence that macrolides can be developed with anti-inflammatory, antibacterial and antiviral activity and show surprising versatility depending on the clinical need.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/química , Antivirais/farmacologia , Descoberta de Drogas , Interferons/imunologia , Macrolídeos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Asma/tratamento farmacológico , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Haemophilus influenzae/efeitos dos fármacos , Humanos , Interferon beta/imunologia , Interferons/biossíntese , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Macrolídeos/química , Macrolídeos/uso terapêutico , Proteínas de Resistência a Myxovirus/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
PLoS One ; 10(9): e0135363, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367003

RESUMO

BACKGROUND: Practical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS) is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR)-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF). METHODS: We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 per protocol). Doses of ultrapure LPS (1, 10, 30 or 100µg/100µl) or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM), a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1) was quantified from nasal epithelial curettage samples taken before and after challenge. RESULTS: Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1ß, IL-6, CXCL8 (IL-8) and CCL3 (MIP-1α) (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100µg LPS). At 100µg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05). Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10µg and 30µg LPS). CONCLUSIONS: Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa. KEY MESSAGES: Ultrapure LPS was used as innate immune stimulus in a human nasal challenge model, with serial sampling of nasal mucosal lining fluid (MLF) by nasosorption using a synthetic absorptive matrix (SAM), and nasal curettage of mucosal cells. A dose response could be demonstrated in terms of levels of IL-1ß, IL-6, CXCL8 and CCL3 in MLF, as well as ICAM-1 mRNA in nasal curettage specimens, and levels of neutrophils in nasal lavage. Depending on higher baseline levels of inflammation, there were occasional magnified innate inflammatory responses to LPS. TRIAL REGISTRATION: Clinical Trials.gov NCT02284074.


Assuntos
Quimiocinas/metabolismo , Imunidade Inata , Interleucinas/metabolismo , Lipopolissacarídeos/imunologia , Mucosa Nasal/imunologia , Adolescente , Adulto , Quimiocinas/genética , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucinas/genética , Lipopolissacarídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Sprays Nasais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Clin Sci (Lond) ; 129(3): 245-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783022

RESUMO

Viral exacerbations of chronic obstructive pulmonary disease (COPD), commonly caused by rhinovirus (RV) infections, are poorly controlled by current therapies. This is due to a lack of understanding of the underlying immunopathological mechanisms. Human studies have identified a number of key immune responses that are associated with RV-induced exacerbations including neutrophilic inflammation, expression of inflammatory cytokines and deficiencies in innate anti-viral interferon. Animal models of COPD exacerbation are required to determine the contribution of these responses to disease pathogenesis. We aimed to develop a short-term mouse model that reproduced the hallmark features of RV-induced exacerbation of COPD. Evaluation of complex protocols involving multiple dose elastase and lipopolysaccharide (LPS) administration combined with RV1B infection showed suppression rather than enhancement of inflammatory parameters compared with control mice infected with RV1B alone. Therefore, these approaches did not accurately model the enhanced inflammation associated with RV infection in patients with COPD compared with healthy subjects. In contrast, a single elastase treatment followed by RV infection led to heightened airway neutrophilic and lymphocytic inflammation, increased expression of tumour necrosis factor (TNF)-α, C-X-C motif chemokine 10 (CXCL10)/IP-10 (interferon γ-induced protein 10) and CCL5 [chemokine (C-C motif) ligand 5]/RANTES (regulated on activation, normal T-cell expressed and secreted), mucus hypersecretion and preliminary evidence for increased airway hyper-responsiveness compared with mice treated with elastase or RV infection alone. In summary, we have developed a new mouse model of RV-induced COPD exacerbation that mimics many of the inflammatory features of human disease. This model, in conjunction with human models of disease, will provide an essential tool for studying disease mechanisms and allow testing of novel therapies with potential to be translated into clinical practice.


Assuntos
Asma/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/imunologia , Animais , Asma/virologia , Quimiocinas/imunologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...